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Abstract

Self-* systems are self-organizing, self-configuring, self-healing, self-tuning and, in general, self-
managing. Ursa Minor is a large-scale storage infrastructure being designed and deployed at Carnegie
Mellon University, with the goal of taking steps towards the self-* ideal. This paper discusses our
early experiences with one specific aspect of storage management: performance tuning and projection.
Ursa Minor uses self-monitoring and rudimentary system modeling to support analysis of how system
changes would affect performance, exposing simple What...if query interfaces to administrators and
tuning agents. We find that most performance predictions are sufficiently accurate (within 10-20%)
and that the associated performance overhead is less than 6%. Such embedded support for What...if
queries simplifies tuning automation and reduces the administrator expertise needed to make acquisition
decisions.

1 Introduction

The administration expenses associated with storage systems are 4–8 times higher than the cost of the hardware
and software [2, 6, 8]. Storage systems are key parts of important data-centric applications, such as DBMSes,
hence their high administration cost directly translates to higher costs for the latter. Storage system admin-
istration involves a broad collection of tasks, including data protection (administrators decide where to create
replicas, repair damaged components, etc.), problem diagnosis (administrators must figure out why a system
is not behaving as expected and determine how to fix it), performance tuning (administrators try to meet per-
formance goals with appropriate data distribution among nodes, appropriate parameter settings, etc.), planning
and deployment (administrators determine how many and which types of components to purchase, install and
configure new hardware and software, etc.), and so on.

Like many [3, 7, 15], our goal is to simplify administration by increasing automation [5]. Unlike some, our
strategy has been to architect systems from the beginning with support for self-management; building automation
tools atop today’s unmanageable infrastructures is as unlikely to approach the self-* ideal as adding security
to a finished system rather than integrating it into the system design. We have designed, implemented, and are
starting to deploy a cluster-based storage infrastructure (called Ursa Minor) with many self-management features
in a data center environment at Carnegie Mellon University.
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Figure 1: Architecture of Ursa Minor

Ursa Minor’s high-level architecture is shown in Figure1. The design separates functionality into two logical
tiers: a mechanical tier that provides storage of and access to data and a managerial tier that automates many
decision and diagnosis tasks. This separation of concerns, with clean interfaces between them, allows each
tier to be specialized and evolved independently. Yet, the two tiers collaborate to simplify administration. The
mechanical tier provides detailed instrumentation and status information to the managerial tier and implements
decisions passed down from it.

Ursa Minor’s mechanical tier consists of versatile cluster-based storage [1]. We focus on cluster-based stor-
age, rather than traditional monolithic disk arrays, because it can simplify some aspects of administration by its
nature. For example, unlike monolithic arrays, cluster-based storage naturally provides incremental scalability.
This feature reduces the consequences of not over-provisioning on initial purchases and the effort involved in
growth over time—one can simply add servers to the cluster as demand increases. Ursa Minor’s data access
protocols are versatile, allowing per-object data distribution choices, including data encoding (e.g., replication
vs. erasure codes), fault model (i.e., numbers and types of faults tolerated), and data placement. This versatility
maximizes the potential benefits of cluster-based storage by allowing one scalable infrastructure to serve the
needs of many data types, rather than forcing administrators to select the right storage system for a particular
usage at the time of purchase or migrate data from one to another as requirements change.

The managerial tier contains most of the functionality normally associated with self-* systems. It provides
guidance to the mechanical tier and high-level interfaces for administrators to manage the storage infrastructure.
The guidance comes in the form of configuration settings, including the data access versatility choices mentioned
above. Various automation agents examine the instrumentation data exposed by the mechanical tier, as it serves
client requests, to identify improvements and solutions to observed problems. These automation agents also
condense instrumentation data to useful information for administrators and allow them to explore the potential
consequences/benefits of adding resources or modifying a dataset’s performance and reliability goals.

This paper focuses on our experiences with one specific aspect of storage administration: predicting the
performance consequences of changes to system configuration. Such predictions represent a crucial building
block for both tuning and acquisition decisions. Yet, such predictions are extremely difficult to produce in
traditional systems, because the consequences of most configuration changes are determined by a complex
interaction of workload characteristics and system internals. As such, it is a substantial source of headaches for
administrators working with limited budgets.

Ursa Minor supports performance prediction with a combination of mechanical tier instrumentation and
managerial tier modeling. The mechanical tier collects and exports various event logs and per-workload, per-
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resource activity traces [13]. The mechanical tier processes this information and uses operational laws and
simple models to support What...if queries (e.g., “What would be the expected performance of client A’s requests
if I move its data to the set S of newly purchased storage-nodes?”) [12].

Our experiences with this approach, to date, have been very positive. Instrumentation overheads are ac-
ceptable (less than 6%), and prediction accuracies are sufficiently high (usually within 10–20%) for effective
decision making. This paper discusses these experiences, some lessons learned, and directions for continuing
work.

2 Tuning knobs in Ursa Minor

Like any substantial system, Ursa Minor has a number of configuration options that have a significant impact
on performance and reliability. In this paper, we focus on two sets on knobs: those that define the data’s en-
coding and those that decide where to actually place the data once the encoding decision has been made. Both
encoding and placement selection involve many trade-offs and are highly dependent upon the underlying system
resources, utilization, and workload access patterns. Yet, significant benefits are realized when these data dis-
tribution choices are specialized correctly to access patterns and fault tolerance requirements [1]. Expecting an
administrator to understand the trade-offs involved in tuning these and to make informed decisions, without sig-
nificant time and system-specific expertise, is unreasonable. This section describes the encoding and placement
options, and the next section explains how Ursa Minor supports choosing among them.

Data encoding: A data encoding specifies the degree of redundancy with which a piece of data is encoded,
the manner in which redundancy is achieved, and whether or not the data is encrypted. Availability requirements
dictate the degree of data redundancy. Redundancy is achieved by replicating or erasure coding the data [4, 10].
Most erasure coding schemes can be characterized by the parameters (m,n). An m-of-n scheme encodes data
into n fragments such that reading any m of them reconstructs the original data. Confidentiality requirements
dictate whether or not encryption is employed. Encryption is performed prior to encoding (and decryption is
performed after decoding). The basic form of What...if questions administrators would like answers to is “What
would client A’s performance be, if its data is encoded using scheme E?”.

There is a large trade-off space in terms of the level of availability, confidentiality, and system resources (such
as CPU, network, storage) consumed as a result of the encoding choice [12, 14, 16]. For example, as n increases,
relative to m, data availability increases. However, the storage capacity consumed also increases (as does the
network bandwidth required during data writes). As m increases, the encoding becomes more space-efficient:
less storage capacity is required to provide a specific degree of data redundancy. However, availability decreases.
More fragments are needed to reconstruct the data during reads. When encryption is used, the confidentiality
of the data increases, but the CPU demand also increases (to encrypt the data). The workload for a given piece
of data should also be considered when selecting the data encoding. For example, it may make more sense to
increase m for a write-mostly workload, so that less network bandwidth is consumed—3-way replication (i.e.,
a 1-of-3 encoding), for example, consumes approximately 40% more network bandwidth than a 3-of-5 erasure
coding scheme for an all-write workload. For an all-read workload, however, both schemes consume the same
network bandwidth.

Data placement: In addition to selecting the data encoding, the storage-nodes on which encoded data
fragments are placed must also be selected. When data is initially created, the question of placement must be an-
swered. Afterwards, different system events may cause the placement decision to be revisited, such as when new
storage-nodes are added to the cluster, when old storage-nodes are retired, and when workloads have changed
sufficiently to warrant re-balancing load. Quantifying the performance effect of adding or subtracting a work-
load from a set of storage-nodes is non-trivial. Each storage-node may have different physical characteristics
(e.g., the amount of buffer cache, types of disks, and network connectivity) and may host data whose workloads
lead to different levels of contention for the physical resources.
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Workload movement What...if questions (e.g., “What is the expected throughput/response client A can get if
its workload is moved to a set of storage-nodes S?”) need answers to several sub-questions. For example, the
buffer cache hit rate of the new workload and the existing workloads on those storage-nodes need to be evaluated
(i.e., for each of the workloads the question is “What is the buffer cache hit rate if I add/subtract workload A
to/from this storage-node?”). The answer to such a question will depend on the particulars of the workload
access patterns and the storage-node’s buffer cache management algorithm. Then, the disk service time for each
of the I/O workloads’ requests that miss in buffer cache will need to be predicted (i.e., for each of the workloads,
the question is “What is the average I/O service time if I add/subtract workload A to/from this storage-node?”).
The new network and CPU demands on each of the storage-nodes needs to be predicted as well.

3 Performance prediction support

With hundreds of resources and tens of workloads it is challenging for administrators to answer What...if ques-
tions such as the above. Doing so accurately requires detailed knowledge of system internals (e.g., buffer cache
replacement policies) and each workload’s characteristics/access patterns (e.g., locality). Traditionally, admin-
istrators use two tools when making decisions on data encoding and placement: their expertise and system
over-provisioning. Most administrators work with a collection of rules-of-thumb learned and developed over
their years of experience. Combined with whatever understanding of application and storage system specifics
are available to them, they apply these rules-of-thumb to planning challenges. Since human-utilized rules-of-
thumb are rarely precise, over-provisioning is used to reduce the need for detailed decisions. Both tools are
expensive, expertise because it requires specialization and over-provisioning because it wastes hardware and
human resources — the additional hardware must be configured and maintained. Further, sufficient expertise
becomes increasingly difficult to achieve as storage systems and applications grow in complexity.

Ursa Minor is designed to be self-predicting: it is able to provide quantitative answers to performance
questions involved with administrator planning and automated tuning. Instrumentation throughout the system
provides detailed monitoring information to automation agents, which use simple models to predict the perfor-
mance consequences of specific changes. Such predictions can be used, internally, to drive self-tuning. They
can also be exported to administrators via preconfigured What...if query interfaces The remainder of this sec-
tion describes the two primary building blocks, monitoring and modeling, and illustrates the effectiveness with
example data.

System self-monitoring: The monitoring is to be detailed so that per-workload, per-resource demands and
latencies can be quantified. Aggregate performance counters typically exposed by systems are insufficient for
this purpose. Ursa Minor uses end-to-end instrumentation in the form of traces of activity records that mark
steps reached in the processing of any given request in the distributed environment. Those traces are stored in
relational databases (Activity DBs) and post-processed to compute demands and latencies. The monitoring is
scalable (hundreds of distributed nodes with several resources — CPU, network, buffer cache and disks) and
easy to query per-workload (tens of workloads). The central idea in designing the monitoring is for it to capture
the work done by each of the system’s various resources, including the CPUs used for data encoding/decoding,
the network, the buffer caches, and the disks. There are less than 200 instrumentation points in Ursa Minor. All
those points of instrumentation are always enabled, and the overhead has been found to be less than 5-6%, as
quantified by Thereska et al. [13]. As a general rule of thumb, we observe that approximately 5% of the available
storage capacity is used for Activity DB storage. Different clients’ access patterns generate different amounts
of traces; the main insight we had from the work on the instrumentation of multiple systems [9, 13] is that it is
inexpensive to monitor a distributed system that has storage at its core. This is because the rate of requests to
such a system is relatively slow, since the system is usually I/O bound. We find the performance and statistics
maintenance cost a reasonable performance price to pay for the added predictability.

Performance modeling tools: Modules for answering What...if questions use modeling tools and observa-
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tion data to produce answers. Tools used include experimental measurements (for encode/decode CPU costs),
operational laws (for bottleneck analysis of CPU, network and disks), and simulation (for cache hit rate projec-
tions). What...if questions can be layered, with high-level What...if modules combining the answers of multiple
lower-level What...if modules. For example, “What would be the performance of client A’s workload if we add
client B’s workload onto the storage-nodes it is using?” needs answers to questions about how the cache hit rate,
disk workload, and network utilization would change. All What...if modules make use of the observation data
collected through self-monitoring.

The basic strategy for making a high-level prediction involves consulting low-level What...if modules for
four resources: CPU, network, buffer cache and disk. To predict client A’s throughput, the automation agents
consult these resource-specific What...if modules to determine which of the resources will be the bottleneck one.
Client A’s peak throughput will be limited by the throughput of that resource. In practice, other clients will share
the resources too, effectively reducing the peak throughput those resources would provide if client A was the
only one running. The automation agents adjusts the throughput predicted for client A to account for that.

The CPU What...if module answers questions of the form “What is the CPU request demand for requests from
client i if the data is encoded using scheme E?”. The CPU modules use direct measurements of encode/decode
costs to answer these questions. Direct measurements of the CPU cost are acceptable, since each encode/decode
operation is short in duration. Direct measurements sidestep the need for constructing analytical models for
different CPU architectures. The network What...if module answers questions of the form “What is the network
request demand for requests from client i if the data is encoded using scheme E?”. To capture first-order effects,
the network module uses a simple analytical function to predict network demand based on the number of bytes
transmitted. Intuitively, schemes based on replication utilize little client CPU but place more demand on the
network and storage resources (n storage nodes are updated on writes). Schemes based on erasure coding are
more network and storage efficient (data is encoded in a “smart” way), but require more client CPU work to
encode the data (math is needed for the “smart” way). All schemes require significant amounts of CPU work
when using encryption.

The buffer cache module answers questions of the form “What is the average fraction of read requests
1− pi that miss in the buffer cache (and thus have to go to disk) if a workload from client i is added to a
storage-node?”. The buffer cache module can similarly answer questions on other workloads when one client’s
workload is removed from a storage-node. The buffer cache module uses simulation to make a prediction.
The module uses buffer cache records of workloads that are to be migrated (collected through monitoring) and
replays them using the buffer cache size and policies of the target storage-node. The output from this module is
the fraction of hits and misses and a trace of requests that have to go to disk for each workload. Simulation is
used, rather than an analytical model, because buffer cache replacement and persistence policies are too complex
and system-dependent to be accurately captured using analytical formulas. The storage-node buffer cache policy
in Ursa Minor is a variant of least-recently-used (LRU) with certain optimizations. The disk What...if module
answers questions of the form “What is the average service time of a request from client i if that request is
part of a random/sequential, read/write stream?” The average service time for a request is dependent on the
access patterns of the workload and the policy of the underlying storage-node. Storage-nodes in Ursa Minor use
NVRAM and a log-structured disk layout [11], which helps with making write performance more predictable
(random-access writes appear sequential). When a disk is installed, a simple model is built for it, based on the
disk’s maximum random read and write bandwidth and maximum sequential read and write bandwidth. These
four parameters are easy to extract empirically. The disk module is analytical. It receives the sequence of I/Os
of the different workloads from the buffer cache What...if module, scans the combined trace to find sequential
and random streams within it, and assigns an expected service time to each request.

Figure 2 illustrates the prediction accuracy for two high-level What...if questions the administrator may pose
(for the exact setup of these experiments, please refer to Thereska et al. [12]). In general, we have observed
predictions accuracies are within 10-20% of the measured performance [12].
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4 Lessons learned and the road ahead

We have had positive experiences with Ursa Minor’s two-tiered architecture, particularly in the space of per-
formance self-prediction and its application to self-tuning and provisioning decision support. With acceptable
overheads, sufficient instrumentation can be continuously gathered to drive simple models that can effectively
guide decisions. This sections expands on some key lessons learned from our experiences thus far and some
challenges that we continue to work on going forward.

4.1 Lessons learned

Throw money at predictability: Administration, not hardware and software costs, dominate today’s data cen-
ter’s costs. Hence, purchasing extra “iron” to allow self-prediction may be warranted. Ursa Minor utilizes
“spare” resources to aid with both self-monitoring and modeling. Spare CPU is used to collect and parse trace
records (we measure about 1-5% of the CPU goes towards this per machine). Spare network is needed to ship
traces to collection points for processing. Spare storage is needed to store these traces and statistics (about 5%
of the storage is dedicated to them). Spare CPU time is also used by automation agents to answer What...if
questions.

Per-client, per-resource monitoring is a must: Exporting hundreds of performance counters to an admin-
istrator is counter-productive. Performance counters neither differentiate among workloads in a shared environ-
ment nor correlate across nodes in a distributed environment. The instrumentation in Ursa Minor tracks a request
from the moment it enters the system until it leaves, from machine to machine. Such instrumentation is the only
way to know 1) where requests spend their time, 2) what was the context during which a client experienced a
performance degradation, and 3) what are the bottleneck resources for one specific workload in the distributed
system.

Separate data collection from usage: We found that there is value in separating the system instrumentation
from its use in specific tuning and control loops, rather than tightly coupling the two. This separation has allowed
easy data access for new uses of the instrumentation, such as performance debugging. It has also allowed us to

6



continuously refine our notions of what data are needed to make an informed tuning decision.
Rough system models work well: Resources in Ursa Minor (CPU, buffer pool, network, disks) have simple

models associated with them. These models are based on direct measurements (CPU), analytical laws (network,
disk) and simulation (buffer pool). These resources are complex, especially when shared by multiple workloads
(e.g., the disk’s performance may range over two orders of magnitude depending on the workload’s and disk’s
characteristics). However, basic modeling works well, at least to pinpoint the bottleneck resource and give
bounds on improvement if the bottleneck is removed. Furthermore, rough modeling is usually sufficient to pick
one from among four or five possible configurations.

4.2 Research agenda

We are following several research directions toward making storage systems truly self-* [5], including automated
data protection, problem diagnosis and repair, and of course tuning. This paper discusses our experiences with
one building block: performance prediction support. Even in this one sub-area, several difficult and exciting
research issues still remain:

Predicting values beyond the average: We need to develop a common terminology for how to measure
predictability (and thus know when we have reached a satisfactory outcome). All our predictions so far concen-
trate on expected values, or averages. Making predictions about variance requires assumptions about workload
patterns (e.g., Poisson arrival times) that may not hold. How can we ensure the variance is predicted within
reasonable bounds as well? Can we get a notion of confidence associated with each prediction?

Co-operation with other self-* systems: How will Ursa Minor interact with other self-* systems, e.g., a
DBMS that also has self-tuning at its core? The DBMS may decide to do an optimization (e.g., suggest to its
administrator to double the amount of buffer cache). That change may alter the workload that Ursa Minor sees,
triggering in turn an optimization from Ursa Minor (e.g., Ursa Minor could suggest to its administrator to switch
the encoding from 3-way replication to 3-of-5). It is desirable for the combined DBMS+Ursa Minor system to
be stable, settle on good global configurations and avoid repeating cycles of optimization. Should the DBMS
micro-manage Ursa Minor’s operations and optimizations, or should the DBMS convey high-level performance
goals to Ursa Minor and let the latter take any necessary action to meet those goals?

Integration of legacy components: We built Ursa Minor from scratch and were thus able to insert enough
detailed instrumentation inside it to answer the above What...if questions. However, it is convenient to be able to
incorporate off-the-shelf components, such as databases, for various services within Ursa Minor (e.g., a metadata
service, an asynchronous event notification service, etc). Is performance prediction possible when such legacy
systems are introduced within Ursa Minor? In particular, how will we account for their resource utilization (they
may use all four system resources just like clients)? What kinds of What...if questions can be answered for these
legacy components and how fine-grained can they be?

Performance isolation for predictability: Without a basic level of performance isolation in a shared en-
vironment with competing workloads, predictions will not be meaningful. Whenever a prediction is made that
workload Wn will get X MB/s of throughput (a QoS guarantee), that prediction should not be annulled when
another workload Wn+1 comes inside the system. Although performance isolation for the CPU and network re-
sources is usually straightforward to do (utilizing well-known scheduling techniques), it still eludes researchers
for the disk resource, which is traditionally non-work-conserving (the cost of a disk “context switch” is pro-
hibitively high, on the order of milliseconds).
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