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Abstract

Parity encoded redundant disk arrays provide highly reliable, cost effective secondary storage with high performance

for reads and large writes. Their performance on small writes, however, is much worse than mirrored disks — the tra-

ditional, highly reliable, but expensive organization for secondary storage. Unfortunately, small writes are a substan-

tial portion of the I/O workload of many important, demanding applications such as on-line transaction processing.

This paper presents parity logging, a novel solution to the small write problem for redundant disk arrays. Parity log-

ging applies journalling techniques to substantially reduce the cost of small writes. We provide a detailed analysis of

parity logging and competing schemes — mirroring, floating storage, and RAID level 5 — and verify these models by

simulation. Parity logging provides performance competitive with mirroring, the best of the alternative single failure

tolerating disk array organizations. However, its overhead is close to the minimum offered by RAID level 5. Finally,

parity logging can exploit data caching much more effectively than all three alternative approaches.
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Section 1. Introduction

The market for disk arrays, collections of independent magnetic disks linked together as a

single data store, is undergoing rapid growth and has been predicted to exceed 7 billion dollars by

1994 [Jones91]. This growth has been driven by three factors. First, the growth in processor speed

has outstripped the growth in disk data rates, requiring multiple disks for adequate bandwidth.

Second, arrays of small diameter disks often have substantial cost, power, and performance

advantages over larger drives. Third, low cost encoding schemes preserve most of these advan-

tages while providing high data reliability (without redundancy, large disk arrays have unaccept-

ably low data reliability because of their large number of component disks). For these three

reasons, redundant disk arrays, also known as Redundant Arrays of Inexpensive Disks (RAID),

are strong candidates for nearly all on-line secondary storage systems [Gibson92].

Figure 1 presents an overview of the RAID systems considered in this paper. The most prom-

ising variant employs rotated parity with data striped on a unit that is one or more disk sectors

[Lee91]. This configuration is commonly known as the RAID level 5 organization [Patterson88].

RAID level 5 arrays exploit the low cost of parity encoding to provide high data reliability

[Gibson93]. Data is striped over all disks so that large files can be fetched with high bandwidth.

By rotating the parity, many small random blocks can also be accessed in parallel without hot

spots on any disk. While RAID level 5 disk arrays offer performance and reliability advantages

for a wide variety of applications, they are thought to possess at least one critical limitation: their
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throughput is penalized by a factor of four over nonredundant arrays for workloads of mostly

small writes. A small write may require prereading the old value of the user’s data, overwriting

this with new user data, prereading the old value of the corresponding parity, then overwriting this

second disk block with the updated parity. In contrast, mirrored disks simply write the user’s data

on two separate disks, and therefore, are only penalized by a factor of two [Bitton88]. This dispar-

ity, four accesses per small write instead of two, has been termed thesmall write problem.

Unfortunately, small write performance is important. The performance of on-line transaction

processing (OLTP) systems, a substantial segment of the secondary storage market, is largely

determined by small write performance. The workload described by figure 2 is typical of OLTP

but nearly the worst possible for RAID level 5; a read-modify-write of an account record will

require four or five disk accesses. The same operation would require three accesses on mirrored

disks, and only two on a nonredundant array. Because of this limitation, many OLTP systems

employ the much more expensive option of mirrored disks.

This paper describes and evaluates a powerful mechanism,parity logging, for eliminating

this small write penalty. Parity logging exploits well understood techniques for logging or journal-

ling events to transform small random accesses into large sequential accesses. Section 2 of this

paper develops the parity logging mechanism. Section 3 introduces a simple model of its perfor-

mance and cost. Section 4 describes alternative disk system organizations, develops comparable

performance models and contrasts them to parity logging. Section 5 provides an analysis of small

write overhead in parity logging with respect to various configuration and workload parameters,

while section 6 analyzes potential bottlenecks. Section 7 analyzes the reliability of parity logging

disk arrays and contrasts it to that of traditional storage systems. Section 8 introduces our simula-

tion system, describes implementations of parity logging and alternative organizations, and con-

trasts their performance on workloads of small random writes and a more general OLTP

workload. Section 9 discusses extensions to multiple failure tolerating systems. Section 10

reviews closely related work. Finally, section 11 closes with a summary of current and future

work in redundant disk arrays for small-write intensive workloads.
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Section 2. Parity Logging

 This section evolves the parity logging modification to RAID level 5. Our approach is moti-

vated by the much higher disk bandwidth of large accesses over small. A parity logging disk array

accumulates small parity updates until sufficiently large accesses can be used to apply these

updates efficiently. Our model is introduced in terms of a simple, but impractical RAID level 4

scheme, then refined to the realistic implementation used in our simulations.

A disk access can be broken down into three components: seek time, rotational positioning

time, and data transfer time. Small disk writes make inefficient use of disk bandwidth because

their data transfer time is much smaller than their seek and rotational positioning times. Figure 3

shows the relative bandwidths of random block, track and cylinder accesses for a modern small-

diameter disk [IBM0661]. This figure largely bears out the lore of disk bandwidth: random cylin-

der accesses move data twice as fast as random track accesses which, in turn, move data ten times

faster than random block accesses. Parity logging exploits this relationship by replacing many

random small parity update accesses with a few large accesses to log and parity blocks.

Logically, we develop our scheme beginning with figure 4 in which a RAID level 4 disk array

is augmented with one additional disk, a log disk. Initially, this log disk is considered empty. As in

RAID level 4, a small write prereads the old user data, then overwrites it. However, instead of

similarly updating parity with a preread and overwrite, the parity update image (the result of

XOR’ing the old and new user data) is held in a log buffer. When enough parity update images are

buffered to allow for an efficient disk transfer (one or more tracks), they are written to the end of

the log on the log disk.

When the log disk fills up, the out-of-date parity and the log of parity update information are

read into memory with large sequential accesses. The logged parity update images are applied to

an in-memory image of the out-of-date parity, and the resulting updated parity is written with

large sequential writes. When this completes, the log disk is marked empty and the logging cycle

begins again.
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Because only parity updates (not data changes) are deferred, this scheme preserves single

failure tolerance. If a data disk failure occurs, the log disk (and any buffered parity updates) are

first applied to the parity disk, which can then be used to reconstruct the lost data in the same man-

ner as RAID level 5. If the log or parity disk fails, the system can simply recover by reconstruct-

ing parity from its data and installing a new empty log disk. If the controller fails, its buffered

parity updates are lost, and parity can be rebuilt in the same way as if a log disk had been lost.1

The addition of a log disk allows substantially less disk arm time to be devoted to parity

maintenance than in a comparable RAID level 4 or 5 array. This can be shown by computing the

average disk busy time devoted to parity updates. Assume there are  data units per track,

tracks per cylinder, and  cylinders per disk (see the glossary in figure 5). First, every  small

writes issued to the array cause one track write to the log to occur. Next, every  small writes

issued cause the log disk to fill up, which must then be emptied by updating the parity. This

requires three full disk accesses, which should occur at cylinder transfer rates. On average, then,

for every  small writes there are  sequential track accesses, and  cylinder accesses for

maintenance of the parity information. Track accesses are  times larger than a random small

write but about 10 times more efficient. Cylinder accesses are twice as efficient and  times larger

than track accesses. Thus parity maintenance for  small writes consumes about as much disk

time as

random small accesses. In a standard RAID level 4 or 5 disk array, parity maintenance for

small writes would consume about as much disk time as  pairs of random block reads and

writes. Thus, by logging parity updates, we have reduced the disk time consumed by parity update

by about a factor of eight.2

1. Our failure model treats disk and controller failures as independent. If concurrent controller and disk failures

must be survived, controller state must be partitioned and replicated [Schulze89, Gibson92, Cao93].

2. Notice that we make no attempt to reduce the cost of the preread and overwrite of the target data block. Addi-

tional savings are possible if data writes and deferred and optimally scheduled [Solworth90, Orji93].
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2.1. Partitioning the Log Into Regions

As stated, however, this scheme is completely impractical: an entire disk’s capacity of ran-

dom access memory is required to hold the parity during the application of the parity updates. Fig-

ure 6 shows how this limitation can be overcome by dividing the array into manageably sized

regions. Each region is a miniature replica of the array proposed above. Small user writes for a

particular region are journalled into that region’s log. When a region’s log fills up, only that

region’s log is required to update the region’s parity. This reduces the size of the controller mem-

ory buffer needed during parity reintegration from the size of a disk to a manageable fraction of a

disk. Our models and simulation will use approximately 100 regions per disk (about 3MB per

region).

Now, however, each region requires a log buffer. Each buffer holds  tracks of parity update

images. When one of these buffers fills up, the corresponding region’s log is appended with an

efficient track (or multitrack) write. Thus, the sequential track writes of the single log scheme are

replaced with random track writes in the multiple region layout. While random track writes are

more expensive than sequential track writes, section 3 will show that this more practical imple-

mentation still has dramatically lower parity maintenance overhead than RAID levels 4 or 5.

To avoid deadlock while maintaining a minimum log buffer transfer size of  tracks, a parity

logging disk array controller requires  tracks of buffer per region. The simplest buffer manage-

ment scheme statically assigns to each region  tracks of buffer. When this buffer is exhausted,

additional writes to the region are blocked. Obviously, such an approach leads to degraded perfor-

mance if a single region becomes a hot spot. A slightly more sophisticated approach overcomes

this limitation. Instead of statically assigning buffers to regions, all unused buffers are placed in a

global free pool. When  tracks of buffer have accumulated for a single region, a log write is ini-

tiated, but additional records are allowed to accumulate in the global buffer pool. Now writes are

only blocked if the entire buffer pool is exhausted, and degraded performance due to buffer con-

tention is effectively avoided. While more sophisticated approaches could use free buffers to
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improve performance (such as a water-mark based flush that attempts to write a multiple of

tracks at once), this simpler approach is assumed in the analysis and simulations that follow.

2.2. Striping Log and Parity for Parallelism

Similarly to the case of RAID level 4, the log and parity disks may become performance bot-

tlenecks if there are many disks in the array. In particular, the disk bandwidth to all logs is just the

bandwidth of single disk. This limitation can be overcome by distributing parity and logs across

all the disks in the array, as indicated in figure 7. Now the aggregate log bandwidth equals the

bandwidth of the array.

The log and parity bandwidth for a particular region, however, is still that of a single disk.

Following the example of RAID level 5, figure 8 shows the parity for each region is block-striped

across the array to increase bandwidth. This also decreases the latency of reintegrating parity

updates for a particular region. The log, however, remains a potential bottleneck.

The log bottleneck may also be eliminated by distributing the log for each region over multi-

ple disks. Figure 9 shows a parity logging array with the log for each region striped across two

disks. Since the parity log is logically part of the parity, it cannot be placed on the same disks as

the data is protects. Thus, log striping reduces the number of disks on which data for a particular

region may be placed. This reduction in data striping in a region increases the disk space overhead

as follows. Each region contains  cylinders of log and  cylinders of parity where .

The number of data cylinders per region, , is related to the size of the parity, , according to

the standard RAID level 4 and 5 rule for data striped over  disks: .

Hence, the disk space overhead

rises as the degree of log striping, , rises (figure 10). As will be shown in section 8, however, the

performance advantages of log striping are substantial.

The buffer memory overhead for this mechanism is modest. With  regions, the controller
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requires  track buffers and another buffer that is  tracks in size for the parity reintegra-

tion. If a single log track is buffered for each of 100 regions, an array of 22 IBM 0661 disks

requires 5592KB of buffer space. If memory is assumed to cost 20 times as much as disk per byte,

this buffer space costs the equivalent of about 35% of one disk — roughly 2% of the 22 disk array.

2.3. The Impact of Varying Log Length

The previous subsection assumed that the same amount of disk space was allocated for log

and parity in each region because our introduction assumed exactly one log disk was added to an

array containing one parity disk. Given the more flexible striped log and parity model of figure 9,

the efficiency and space overheads of parity logging can be altered by increasing or decreasing the

amount of log allocated per region. Let  be the ratio of log to parity ( ) in each

region. The disk space overhead becomes

The log for each region now fills up after  small writes. Updating the parity still requires

reading the parity, reading the log, and writing the parity disk, so the parity maintenance work for

 small writes is

random small accesses, or an overhead of  random small accesses per small

write. Performance can therefore by traded for space, as in shown in figure 11. For instance, allo-

cating twice as much log as parity ( ) increases the space overhead to 13.5% but decreases

the parity maintenance overhead to 10% of that of RAID level 5, which does two parity accesses

for each small write. Halving the amount of log ( ) decreases the disk space overhead to

6.75% while only increasing the parity maintenance work to 18% of RAID level 5.
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2.4. Number of Regions

The selection of the number of regions has an important impact on controller memory

requirements and cost. Recall that the array controller requires two types of buffer: a single parity

reintegration buffer and per-region log buffers. The cost of this additional memory is

, where  is the number of regions and  is the cost of a track of memory. The

cost of this additional memory can be minimized by choosing the number of regions, , to equal

. Selecting this value for  makes the cost of the additional memory . However,

to maintain transfer efficiency, the sublogs, parity, and user data for each region should all be an

integral number of tracks, and the user data per region must be exactly  times as long

as the corresponding parity for that region. A layout that meets these criteria — that begins with a

calculated number of regions then truncates the sizes of each component to an integral number of

tracks while maintaining the  ratio of data and parity — may waste a considerable

fraction of every disk. One way to reduce wasted space is to consider a range of numbers of

regions near the optimum as calculated above, looking for a value which yields a better track dis-

cretization. We have found that a range of % around the optimum number of regions leads to

a choice which wastes less than 1% of the array’s disk space.

If, however, the per-region sublogs, parity and user data are not required to be an integral

number of tracks, fragmentation is substantially reduced. Relaxing this discrete tracks condition

will cause additional head switches and single cylinder seeks to occur during log writes, thereby

increasing overhead. Fortunately, for disks similar to the IBM Lightning drive (figure 12), this

added overhead should reduce performance by less than 3%.

2.5. Accommodating the RAID Level 5 Large Write Optimization

In parity-based disk arrays, a large write operation, which is defined as a write that updates all

the data units associated with a particular parity unit, can easily be serviced more efficiently than

a small write operation. Since all data units in the stripe are updated, the new parity can be com-
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puted in memory from the new data and written directly to the parity unit. This “large write opti-

mization” avoids the preread of data and parity associated with small writes, improving write

performance by about a factor of four [Patterson88].

This optimization can not be applied directly to parity logging disk arrays as we have

described them so far because there may exist outstanding (not yet reintegrated) logged updates

for a particular parity unit at the time when a large write overwrites that parity unit. If these

logged updates were ignored and a parity overwrite were done, the parity could be erroneously

updated with the stale logged updates when reintegration occurs. This problem can be corrected

by placing the new parity into the log instead of writing it directly to disk.3 Parity placed in the

log by a large write operation is marked as a special “overwrite” record, and the reintegration pro-

cess, which normally XORs each log record into the corresponding parity unit, now distinguishes

between a normal “update” log record and the new overwrite record. Update records are XORed

into the accumulating parity unit, while overwrite records are simply copied in.

This approach has the disadvantage of forcing the log to be processed sequentially rather than

concurrently. If the log were guaranteed to contain only update records, the log records could be

applied to the parity image in any order, increasing parallelism. The existence of overwrite

records forces the reintegration process to determine the sequence in which the log updates

occurred and to apply the log records accordingly.

This new sequentiality constraint potentially lengthens the reintegration time, which, as sec-

tion 8 will show, can substantially degrade performance at high loads. In the simplest case, a

region’s logs must be in read in the order they were written and merged to produce a update/over-

write image before any of the parity is processed. Given sufficient buffer memory for a region’s

parity and log, full parallelism could be achieved during the log and parity reads, but the applica-

3. An alternative way to correct the problem is to write the new parity directly to disk and place a “cancel” record

in the log. The reintegration process would then discard all previous log entries for the identified parity unit when it

detects a cancel record. This solution has the potential to reduce the log traffic by making cancel records only a few

bytes in size.
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tion of logs to parity would still have to be deferred until these reads complete. At this point, a

sequential in-memory reintegration could be performed. However, as long as log buffers are writ-

ten to sublogs in a round-robin fashion, it is reasonable to assume that parallel sublog reads will

return parity records in nearly sequential order. Based on this observation and because overwrite

records eliminate all prior information, the following highly parallel algorithm can be used. Each

block in the reintegration buffer is initially zeroed and marked “non-overwrite”. Parity and log for

the target region are all read in parallel. A parity block is applied if the corresponding buffer is

marked “non-overwrite,” and discarded if the buffer is marked “overwrite.” If a logged record is

an update and the block is “non-overwritten”, the record is XORed in, but is buffered until all ear-

lier log records have been processed. If a log record is an overwrite, the target block is overwritten

and marked as “overwritten by record X.” Any buffered updates that have already been applied

should occur after this overwrite are reapplied. Overwrite or update records preceding X are not

applied to a block marked “overwritten by X.” As long as parallel reads on different sublogs pro-

ceeded at nearly the same rate, this algorithm will not consume much extra buffer space. If buffer

exhaustion occurs, the algorithm can simply serialize. Parity is computed with a similar approach

in the ADP-93-02 disk array controller [NCR93].

In summary, parity logging buffers parity updates until they can be written to a log efficiently.

It then further delays their reintegration into the a redundant disk array’s parity until the size of the

log makes a complete revision of the parity efficient. To accommodate limited memory for reinte-

gration of parity records, the disk arrays is partitioned into regions with per-region logging. Then,

to avoid bandwidth bottlenecks, parity and log information is striped over multiple disks. This

parity logging scheme reduces the extra work done by RAID level 5 arrays for small random

writes to little more than is done in the much more expensive, traditional mirrored approach.

Section 3. Analytical Modeling for Parity Logging

In this section we present a utilization-based analytical model of a parity logging redundant

disk array. This model predicts sustained array performance in terms of achieved disk utilization,
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disk geometry, and access size. The variables used in this model are defined in figure 5.

Consider a single small user write in a parity logging array. The user data must be preread,

then overwritten. This is done in an I/O which seeks to the cylinder with the user’s data, waits for

the data to rotate under the head, reads the data, waits for the disk to spin around once, then

updates the data.4 On average, such an access will take

disk seconds, which may be simplified to .

In many cases, it may be possible to predictably avoid prereading user data. For example, in

the TPC benchmark, the update of a customer account record is a read-modify-write operation; an

account record is read, modified in memory, then written back to disk. In these cases, the old data

value is usually known (cached) at the time of the write and the preread of the data may be

skipped. Without prereading, the disk busy time needed for a small write access is

.

Each region has  tracks worth of log buffers. On average, for every  small user writes,

one region’s buffers will fill and be written to the region’s log in a single  track write. The num-

ber of disk seconds needed to do this is

assuming all  tracks are on the same cylinder5. This may be rewritten as

4. This single access could be separated into two accesses each takingS+R+2R/D  for a total of2S+(2+4/D)R.

For most modern disksS is about twiceR, so the single access is more efficient.

5. Disks that support zero-latency writes [Salem86] can eliminate the initial rotational positioning delay. If only a

single track is buffered (K=1) this can reduce the I/O time by 26% in drives such as the IBM 0661 (which does not

support this feature).
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.

Finally, on average, for every  small user writes one region of logged parity must be

reintegrated. First, consider the case of an array that does not stripe its log (figure 8). The reinte-

gration consists of three steps: a sequential read of  cylinders (one region) from the log, a

striped read of the parity from  disks, and a striped write of the parity back onto  disks.

The sequential log read requires

disk seconds, and may be rewritten as

.

The striped parity accesses each consist of  sequential transfers of  cylin-

ders. Each of these sequential transfers takes

Rewriting, the total striped access takes  disk seconds

.

Thus, on average, every small user write utilizes disks for

Figure 13 shows the contributions to disk busy time of the various terms after  in the

above equation for the example disk array given in figure 12.
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The analysis for a parity logging disk array with a striped log such as that shown in figure 9 is

similar. When a region’s log buffers fill, these buffers will be written to one of the regions sublogs

in a single  track write. The cost of this operation is the same as in the unstriped case. Log rein-

tegration still occurs every  small user writes, but now consists of three striped I/Os: a

striped (over  disks) read of the log, and a striped (over  disks) read and write of the parity.

Each of  accesses in the striped log read costs

for a total of

disk seconds. Similarly, the striped parity reads and writes will consume

disk seconds. Thus striping introduces an additional overhead of  disk seconds to

the log reintegration. This increases the parity maintenance overhead per small write by

.

As section 8 will show, this increase in parity maintenance work is worthwhile because it

reduces long reintegration periods during which disk queues grow, the system becomes underuti-

lized, and maximum performance falls far short of expectations.

Section 4. Analytical Models for Alternative Schemes

Few other authors have addressed the problem of high performance yet reliable disk storage

for small write workloads. The most notable of these is floating data and parity [Menon92]. This

section reviews and estimates the performance of four configurations: mirrored disks (RAID

level 1), nonredundant disk arrays (RAID level 0), distributed N+1 parity (RAID level 5), and

K
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floating data and parity. The notation and analysis methodology are the same as used in section 3.

In nonredundant disk arrays, a small write requires a single disk access which consumes

disk-arm seconds. No long term storage is required in the controller.

In mirrored systems, every data unit is stored on two disks, and all write requests update both

copies. Each access takes as much time as a small write in a nonredundant disk array,

. Hence, each small user write utilizes disks for a total of  sec-

onds. While mirrored disks are more efficient than RAID level 5, half of their capacity is devoted

to redundant data. Controllers for mirrored disk arrays do not require long term buffer.

Small writes in RAID level 5 disk arrays require four I/O’s: data preread, data write, parity

read, parity write. These can be combined into two read-rotate-write accesses, each of which takes

disk seconds for a total disk busy time of . Again, no long term controller stor-

age is required.

 Thefloating data and parity modification to RAID level 5 was proposed by Menon and Kas-

son [Menon92]. In its most aggressive variant, this technique organizes data and parity into cylin-

ders that contain either data only or parity only. As illustrated in figure 14, by maintaining a single

track of empty space per cylinder, floating data and parity effectively eliminates the extra rota-

tional delay of RAID level 5 read-rotate-write accesses. With floating data and parity, the rota-

tional term  in the RAID level 5 disk arm busy time expression above is replaced with

a head switch and a short rotational delay. Using disks similar to those in our sample array, Menon

and Kasson report an average delay of 0.76 data units. So, the expected disk busy time for each

access in a floating data and parity array is
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which may be rewritten as . Hence, the total disk busy time for a small

random user write in a floating data and parity array is . Note that if

 is large and  is small, this is close to the performance of mirroring.

Even with a spare track in every cylinder, floating data and parity arrays still have excellent

storage overheads. For an  disk array, floating data and parity has a storage overhead of

.6 Floating data and parity arrays, however, require substantial fault-tolerant

storage in the array controller to keep track of the current location of data and parity.7 For each

cylinder, an allocation bitmask is maintained. This requires  bits per cylinder. In addition, a

table of current block locations for each cylinder is required. This consumes

 bits per cylinder. Thus, a total of  bits of

fault-tolerant controller storage are required. For the disks in figure 12, this is 1,343,784 bits (164

KB) per disk. The total controller storage is about 3608KB, roughly comparable to parity logging.

While floating data and parity substantially improves the performance of small writes relative

to RAID level 5, its performance for other types of accesses is degraded. Within a cylinder, logi-

cally contiguous user data units are not likely to be physically contiguous. In the worse case, two

consecutive data units may end up at the same rotational position on two different tracks, requir-

ing a complete disk rotation to read both. In addition, the average track has only

valid data units. Thus, even on disks with zero-latency reads, the maximum sequential read band-

width is reduced, on average, by .

Figure 15 compares the model’s estimates for maximum throughput of the example arrays

6. Each disk gives up 1/T  of its capacity for free space and the array gives up 1/N  of the remaining space for par-

ity. Thus the array storage efficiency is (T-1)(N-1)/TN and the array storage overhead is 1-(T-1)(N-1)/TN = (T+N-

1)/TN.

7. The nature of fault tolerance in a storage controller depends on an underlying failure model. If only power fail-

ure is of concern, then nonvolatile storage will suffice, while other fault models require redundant storage.
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based on figure 12. Throughput at lower utilizations may be calculated by scaling the maximum

throughput numbers by the disk utilization. Figure 15 predicts that parity logging and floating data

and parity will both substantially improve on RAID level 5, approaching the performance of mir-

roring, for small random writes.

Section 5. Sensitivity Analysis

Figure 13 shows the amortized write overheads for parity logging for our example array with

an unstriped log. This section analyzes the sensitivity of these overheads to workload parameters.

disk geometry parameters, disk performance parameters, and controller configuration.

5.1. Workload Parameters

Of the workload parameters, the number of data units per track, , has the greatest impact on

performance. Parity logging transfers each data unit two more times than RAID level 5 and four

more times than mirroring. If the transfer time of a unit is small, parity logging will be efficient.

Figure 16 shows the relative performance of parity logging (when data caching is ineffective; that

is, blind writes), mirroring and RAID level 5 for different values of  for our example array. The

performance of mirroring exceeds that of parity logging with 13 or fewer data units per track, and

RAID level 5 performance exceeds that of parity logging with the unlikely case of 2 data units per

track. Industry estimates, however, show that track capacity within a given form factor is increas-

ing at over 20% a year. Consequently, it is reasonable to assume that the number of data units per

track may not decrease even as database account record sizes grow with new value-added fea-

tures. Additionally, the large capacity of the outer cylinders in zone bit recording [Seagate92,

Hewlett-Packard93] disks offers the potential to increase the efficiency of sequential transfers in

parity logging by locating the log and parity in this area.

5.2. Disk Geometry Parameters

Zero latency write support has a small impact even though it eliminates the rotational delay

D

D
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for track sized writes. Figure 17(a) shows the contribution of rotational delay to the log write

overhead. Even when only a single track is buffered per region, the throughput improvement due

to zero latency support is less than 2.5%.

Parity logging performance is also insensitive to the number of cylinders in the disk, . The

number of tracks per cylinder, , measurably impacts the relative performance of sequential

transfer and random I/O: head switches are replaced with single cylinder seeks. Single cylinder

seeks are typically between 1 and 3 times as expensive as head switches, so decreasing

decreases the efficiency of long transfers. Each small write is involved is three long transfers: log

read, parity read and parity write. For a hypothetical Lightning drive with a single track per cylin-

der, the contribution of track switches climbs from 3(13(1.16 ms)+2 ms)/14(12) = 0.305 ms to

3(2.0 ms)/12 = 0.5 ms, increasing the overhead by roughly 3% (0.2 ms out of 6.6 ms). Thus, while

sequential transfer performance is sensitive to , parity logging is not.

5.3.  Disk performance parameters

The ratio of average seek time to rotational latency has a substantial impact on the perfor-

mance of parity logging disk arrays. Figure 18 plots the relative performance of parity logging,

RAID level 5 and mirroring versus seek time. The performance of mirroring achieves as much

benefit from decreased seek time as nonredundant arrays because its two accesses are each equiv-

alent to the single nonredundant access. RAID level 5 and parity logging, however, do more rota-

tional work for each seek so decreasing seek time relative to rotational latency hurts their

performance relative to nonredundant arrays. Parity logging does extra rotational work to avoid

the parity write seek of RAID level 5. Consequently, the relative advantage of parity logging over

RAID level 5 decreases as the seek time to rotational latency ratio decreases. This ratio, however,

is nearly unity for all modern drives, and shows no particular trend in any direction.

5.4. Array Controller Parameters

There are three array controller parameters that influence the performance of parity logging:

V

T
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the number of regions, , the number of disks, , and the number of tracks buffered per region,

. The performance of parity logging is insensitive to , as long as is kept small enough to

maintain the efficiency of the long log read and parity read/write operations. Practically, this

means the number of regions should be less than half the number of cylinders per drive. The num-

ber of disks has almost no impact on performance, unless the number of disks become sufficiently

large that the parity and log become too finely striped or that the array controller buffers become

the bottleneck. The number of tracks buffered per region, , however, has a measurable if small

impact on overhead. As  is increased, the overhead of the log write approaches that of a long

sequential transfer. Figure 17(b) shows the log write overhead for various values of  and the cor-

responding performance of the array.

Section 6. Bottleneck analysis

The analytical model presented in section 3 provides an estimate of the performance of parity

logging disk array in terms of the disk arm service time. Such a model will only be an accurate

predictor if (1) the disks are equally loaded and (2) controller resources are not exhausted. These

assumptions are examined in this section.

The model in section 3 assumes the user request stream is spread uniformly throughout the

disk array. While this assumption approximately holds for many OLTP workloads, other work-

loads exhibit substantial locality. In particular, consider the extreme situation in which all user I/O

is concentrated within one region. Choosing an appropriate data stripe unit [Chen90] will balance

the user I/O across the actuators that contain data for this region; however, log and data traffic are

partitioned over non-overlapping disks. Recall that every  small user writes to a particular

region will cause -track log writes, a full log read and a full read and full write of the

parity for that region. Parity reads and writes are spread out over the entire array, so a uniform

load is maintained even for this extremely localized workload if the work per data disk equals the

work per sublog disk. That is,
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where , and  are the service times for a  track write and a full log read, respectively,

and where  is the service time for a small user write — when data caching is effective, or

 when it is not. Solving for , one obtains

.

Strictly speaking,  is a function of , so the relation above does not immediately provide a

value for  that will balance the workload. However, as a long as the transfer time for a sublog is

large relative to the average seek time,  can be accurately approximated by the service time for

an unstriped log. Using this approximation and the disk array parameters from figure 12, one

obtains  for blind writes ( ) and  for the write hit case ( ).

Thus, to balance the load in this highly localized workload, the example 22 disk array must have

two to four sublogs per region.

Another potential bottleneck is the log and parity reintegration buffer. Recall that log reinte-

gration requires two disk utilizing steps: reading the log and parity, and writing the parity. The

reintegration buffer must be held from the start of the reads until the successful completion of the

writes. While reintegration involves every disk in the array, the disk utilization during reintegra-

tion is not 100% because reintegration places unequal loads on the disks. Thus, during one log

reintegration, another log could fill and block on the reintegration buffer. By computing the

latency of log application an estimate of vulnerability to this kind of underutilization can be

obtained.

The first step of reintegration involves a simultaneous read of the log and parity. Of the

disks in the array,  of them will contain only parity, while the remaining  contain both

parity and log. Since the parity and log for a region are consecutive (see figure 9), the log and par-
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ity may be transferred in one sequential access. Reintegration, therefore, requires  disks

to sequentially transfer  cylinders, and the remaining  disks to transfer

cylinders. If the disks arms are in random positions, it can be shown [Bitton88] that the expected

longest seek of these  parallel transfers is

of the disk. For most disks, a maximum (full stroke) seek is roughly twice the average seek, and

the seek time distribution between the average (1/3 stroke) and full stroke is roughly linear, so we

approximate the maximum parallel seek time by

where  is the fraction of the stroke seeked over. Assuming the worst case — that a disk with log

records on it has the longest seek — the latency for reading the log and parity into memory on an

idle array (or with preemptible I/Os) is

.

After reading the log and parity, the controller will take some time to finish integrating the

log. With an aggressive algorithm, most of the log reintegration should be overlapped with the

transfer process. The examination of how much processing is not overlapped by transfer is

beyond the scope of this paper, and we simply denote this time as . In the calculations below,

 is assumed to be negligible.

After the completion of reintegration, the modified parity is written out. Writing out the parity

requires that each drive sequentially write  cylinders of parity. The latency for the longest

of these writes is expected to be

,

assuming that intervening I/Os have randomized the disk arm positions and that none of the rein-
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tegration accesses are delayed by queueing. Thus, the total time to reintegrate the parity for one

region is

In a saturated, balanced system, the frequency of reintegration operations is simply

, where  is the amortized disk arm time per small write calculated in section

3, so the mean time between reintegrations is at least . Figure 19 plots the reinte-

gration time for the example array for various degrees of log striping. As we have suggested pre-

viously, the reintegration latency is quite sensitive to the degree of log striping.

Section 7. Reliability Analysis

The traditional method for improving the reliability of disks has been mirroring. A drawback

of mirroring is the high overhead required for redundancy (50% of the total disk capacity is lost to

redundancy). Parity logging provides a low-overhead alternative. This section compares the over-

head and reliability of mirroring, parity logging, and nonredundant arrays.

Independent disk failures in single fault tolerant disk arrays can be characterized by a Mean

Time To Data Loss ( ) and a reliability function , the probability of surviving a life-

time of , of

where  represents the number of redundancy groups,  the number of drives per group,

 the mean time for a disk to fail, and  is the mean time required to repair a

single failed disk [Gibson93]. For modern disks, a  of 300,000 hours is not unreason-

able [Hewlett-Packard93] and repair times of 1 hour are easily achieved with an on-line spare

Tload Tcpu Twrite+ + =

Tcpu 2 S 1 2⁄ 3IN 2⁄+( ) R M−+[ ] 2CP N⁄ CL L⁄+[ ] 2RT T 1−( ) H M+ +( )+ +

DTCL tamw× /N tamw

N tamwDTCL( )⁄

MTTDL R t( )

t

MTTDL
2N 1−( ) MTTFdiskMTTRdisk MTTFdisk

2+
GN N 1−( ) MTTRdisk

=

R t( ) exp t MTTDL⁄−( )=

G N

MTTFdisk MTTRdisk

MTTFdisk



Page 22 of 66

[Holland93]. As shown in figure 20, both parity logging and mirroring offer extremely reliable

storage.

Section 8. Simulation

To validate the models presented in sections 3 and 4 and to explore response time for these

arrays, we simulated the example array described in figure 12 under five different configurations:

nonredundant, mirroring, RAID level 5, floating data and parity, and parity logging. Parity log-

ging was simulated with a single track of log buffer per region for several different degrees of log

striping. The RAIDSIM package, a disk array simulator derived from the Sprite operating system

disk array driver [Ousterhout88, Lee91], was extended with implementations of parity logging

and floating data and parity.

In each simulation, a request stream was generated by 66 user processes (i.e, three per disk).

Each process requests a small write from a disk selected at random, then waits for acknowledg-

ment from the disk array. Process think time has a Gaussian distribution, but the mean is dynami-

cally adjusted until the desired system throughput is achieved. If the disk array is unable to sustain

the offered load, think time is driven to zero. Simulations were run until the 95% confidence inter-

val of the response time became less than 5% of the mean.

8.1. The Need for Log Striping

Figure 21 shows peak throughput, response time8 and response time variance as the degree of

log striping  is varied from 1 (unstriped) to 13. As section 6 and figure 19 suggest, when the

log is striped over a small number of disks, performance is substantially lower than in other con-

figurations with more log striping. This behavior results from a “convoy effect” in which pro-

cesses back up behind very long sublog read accesses. Figure 22 shows sublog read times for low

8.  The simulations reported herein consider a user write in a parity logging array complete when the user data is

on disk and the parity update record has been buffered. The alternatives (nonredundant, mirroring, floating data and

parity, and RAID level 5) consider a user write complete when data and parity are on disk.

L( )
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degrees of log striping. While these long I/O’s are efficient, they completely tie up a disk for sec-

onds. During this period, any access to the disks involved in the striped log read will block, reduc-

ing the effective concurrency in the system. This concurrency reduction causes other disks in the

array to become idle until the log read completes, reducing peak throughput and utilization. This

convoy effect also has a substantial impact on response time; I/O requests that block behind these

long read requests will have very long response times, leading to an increase in both average

response time and response time variance. Fortunately, a modest degree of striping eliminates the

convoy effect. Striping the log over six disks achieves most of the available performance without

greatly increasing disk space overhead. Figure 23 compares the performance of a parity logging

array with one log buffer per region and a log striping degree of six against the alternative organi-

zations presented in section 4: nonredundant, mirroring, RAID level 5, and floating data and par-

ity. Figures 23(a)-(b) present response time statistics as a function of throughput for simulations

that preread (data cache miss) user data, and (c) presents the corresponding data for the no preread

(data cache hit) case.

The simulation response time results may be summarized as follows. Nonredundant disk

arrays perform a single disk access per user write, so they have the lowest and most slowly grow-

ing response time. Mirroring shows a similar behavior, but is driven into saturation with half as

much load. In contrast, each small user write in RAID level 5, in the user data preread case, com-

pletes two slow read-rotate-write accesses sequentially.9 Unloaded system response time is thus

quite high and queuing effects cause it to grow quite rapidly with load. While the response time

for parity logging on a lightly loaded system is approximately 14 ms higher than mirroring,10 the

peak sustainable I/O rate and response time are quite similar. Similarly to RAID level 5, floating

9. In a highly aggressive implementation, it would be possible to initiate the parity read-rotate-write access after

the preread of the old user data completes, but we assume status is only returned after the completion an entire read-

rotate-write access.

10. In parity logging arrays that are not driven into saturation, prioritizing the log accesses to allow preemption

by user accesses will reduce response time and response time variance.
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data and parity arrays require two read-rotate-write accesses per user write. But by removing the

rotational delays, floating data and parity achieves peak IO rates similar to parity logging and mir-

roring. Response time, however, is significantly longer.

Figure 23(c) shows the performance of all configurations without data prereads As expected,

this has no effect on mirrored or nonredundant systems and the performance of the other three

configurations improves. RAID level 5 benefits substantially from the elimination of the full rota-

tion delay incurred by a data preread. In addition, a user’s data write and parity update can be

issued concurrently, further improving the response time and array utilization. Floating data and

parity achieves a lesser benefit from elimination of the preread because its preread overhead is

much less. Response time does drop, however, because of the ability to issue user write and parity

update accesses simultaneously. The response time of parity logging improves by a full rotational

delay (13.9 ms) due to the elimination of the preread rotate, providing an unloaded response time

comparable to a nonredundant array. This also reduces the actuator time per I/O by nearly one

third, allowing its I/O rate and response time to improve proportionately.

The variance in user response time, however, is larger with parity logging than with mirroring

or floating data and parity, although it is not as large as with RAID level 5. This results from the

basic structure of parity logging: most accesses are fast because inefficient work is delayed. How-

ever, some accesses see long response times as delayed work is (efficiently) completed. With this

higher variance in mind, we conclude that the response time estimates in figure 23 show that par-

ity logging is a viable and much lower cost alternative to mirroring for small-write intensive

workloads.

8.2. Analytic Model Agreement with Simulation

The analytical model estimates in figure 15 predict the vertical asymptotes (saturation

throughputs) of figure 23(a) and (c). A direct comparison, however, will display significant dis-

crepancies because of the relatively small number of simulated processes. Because the number of

these requesting processes is fixed, one overloaded disk can cause other disks to be underutilized.
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The impact of this effect on peak disk utilization varies from configuration to configuration. Fig-

ure 24 shows the disk utilizations at peak load for the configurations simulated. Parity logging,

floating data and parity, RAID level 5, and nonredundant disk arrays are about equally affected

since each system presents only one disk access request at a time per process. Mirroring, on the

other hand, presents two write requests simultaneously and is therefore impacted the least.11

Nonetheless, figure 25 shows that simulation agreement with the model is good (within± 5%)

when the model results of figure 15 are scaled by the achieved disk utilizations of figure 24.

8.3. Performance in More General Workloads

Up to this point, the results in this section have applied only to workloads whose accesses are

100% small random writes. This section examines a mixed workload, defined in figure 26, mod-

eled on statistics taken from an airline reservation system [Ramakrishnan92]. With this more gen-

eral workload, the results of the earlier sections are modified by two important effects: reads and

medium to large writes. The issues encountered in extending floating data and parity to handle

variable sized access are complex and it is neglected from this section. For the other array config-

urations reads will perform identically. This will have the effect of compressing the performance

differences between configurations. Writes that are not small, however, will hurt the performance

of parity logging as is discussed in section 5.1.

Figure 27 presents the results of simulations of four of the array configurations — nonredun-

dant, mirroring, RAID level 5, and parity logging — on this more realistic OLTP workload. With

FIFO disk scheduling, used throughout the rest of this paper, parity logging is substantially supe-

rior to RAID level 5 and equivalent to mirroring when data caching of writes is effective. With

CVSCAN, all configurations delivery higher throughput with lower average response times, but

mirroring and nonredundant arrays benefit most. Nonetheless, parity logging remains superior to

11. In many systems, writes to mirrored disks are serialized. One disk in each pair is considered primary, and the

write to that disk must complete before the write to the second disk begins. Such serialization would reduce mirror-

ing’s disk utilization to the same as the nonredundant case and possibly double response time.
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RAID level 5 and is quite close to mirroring when data caching of writes is effective.

Section 9. Multiple failure tolerating arrays

A significant advantage of parity logging is its efficient extension to multiple failure tolerat-

ing arrays. Multiple failure tolerance provides much longer mean time to data loss and greater tol-

erance for bad blocks discovered during reconstruction [Gibson92]. Using codes more powerful

than parity, RAID level 5 and its variants can all be extended to tolerate  concurrent failures. Fig-

ure 28 gives an example of one of the more easily understood double failure tolerant disk array

organizations. This two dimensional parity and the more familiar one dimensional parity used in

the rest of this paper are calledbinary codes because a particular bit of the parity depends on

exactly one bit from each of a subset of the data disks. If, instead, generalized parity (check infor-

mation) is computed as a multiple-bit symbol, dependent on a multiple-bit symbol from each of a

subset of the data disks, then the code is anon-binary code [Macwilliams77, Gibson92]. Non-

binary codes can achieve much lower check information space overhead in a multiple failure tol-

erating array. In particular, a variant of a Reed-Solomon code called “  Parity” has been used

in disk array products to provide double failure tolerance with only two check information disks

[ATC90].

This paper is not concerned with the choice of codes that might be used for  failure toler-

ance, except to note that the best of these codes all have one property important to small random

write performance [Gibson89]: each small write updates  disks —  disks containing

check information (generalized parity) and the disk containing the user’s data. This check mainte-

nance work, which scales up with the number of failures tolerated, is exactly the work that parity

logging is designed to handle more efficiently.

Multiple failure tolerating parity logging disk arrays arise as a natural extension of multiple

failure tolerating variants of RAID 5. As with single failure tolerating parity logging, the underly-

ing disk array is augmented with a log. However, to maintain  failure tolerance, the log itself

must be  failure tolerant. One way to achieve  failure tolerance is to replicate the log
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times. Figure 29 shows one region of a double fault tolerant parity logging disk array based on a

nonbinary code such as “P+Q Parity.”

The log management cycle is quite similar to that of a single fault tolerant parity logging disk

array. When a region’s log buffers fill up, the corresponding parity update records are written once

into each of the  logs. When these logs fill up, one copy of the log is read into the reintegration

buffer, along with the check information for the region. The updated check information is then

rewritten, all log copies are truncated, and the logging cycle starts again.

Mirroring and floating data and parity also extend to multiple failure tolerance in straightfor-

ward manner. Mirroring becomes -copy shadowing [Bitton88]. Floating data and parity becomes

floating data and check, requiring  “floated” read-rotate-write accesses per blind write.

Relative to these other schemes, parity logging has better performance because of its lower

nonpreread overhead. The overhead associated with maintaining check information can be

divided into two components: preread bandwidth overhead and nonpreread bandwidth overhead.

The bandwidth needed to preread the old copy of the user’s data is independent of the number of

failures to be tolerated. Nonpreread bandwidth, the disk work done to update the check informa-

tion given a data change, grows linearly with the number of failures to be tolerated. Parity logging

has the smallest cost for this latter, linearly growing component of check maintenance overhead

because all check information accesses (log and generalized parity) are done efficiently.

Figure 30 shows the maximum rate that small random writes can be completed in zero, sin-

gle, double, and triple failure tolerating arrays using mirroring, RAID level 5, floating data and

parity and parity logging. This data is derived from the models of sections 3 and 4 and applied to

the example disk array of figure 12.

The maximum I/O rate of the parity logging array declines more slowly than the other config-

urations because parity logging has a substantially lower nonpreread overhead. For example,

while triple failure tolerating parity logging arrays should sustain about 35% of the I/O rate of

nonredundant arrays for random small writes, quadruplicated storage (triple failure tolerating mir-
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roring disk arrays) will sustain only 25%.

Section 10.  Related Work

 Bhide and Dias [Bhide92] have independently developed a scheme similar to parity logging.

Their LRAID-X4 organization maintains separate parity and parity-update log disks, and periodi-

cally applies the logged updates to the parity disk. In order to allow writes from the user to occur

in parallel with log reintegration, they duplicate both the parity and the parity log for a total of

four overhead disks. This double-buffering scheme, while expensive in disks, can support a fairly

large number of data disks without saturating the parity and log disks, so LRAID-X4 does not dis-

tribute parity or log information. Instead of breaking down the log disk into regions to reduce the

required storage in the controller, LRAID-X4 sorts buffered parity updates in memory according

to the parity block to which they apply. This allows LRAID-X4 to write a “run” of updates for

ascending parity blocks to a log disk. When this log disk is full, further updates are sorted into

runs and written to the second log disk while the first log disk reintegrates its updates with the par-

ity by reading from one parity disk and writing to the other. The reintegration of a full log disk

uses an external sorting algorithm to collect subsequences applying to one area of parity from

each run on the log disk. If this area is large, all log reads and parity reads and writes will be effi-

cient.

The model derived by Bhide and Dias assumes user data does not need to be preread. It

shows that throughput is limited by the rate at which subsequences of runs are collected for reinte-

gration with the parity. In a 100% write workload, the peak throughput is , where

is the amortized time taken to read a block in a subsequence of a run on the log disk. Bhide and

Dias approximate this by

where  is the time to seek across 5 to 10 tracks and  is the average size in

tracks of a subsequence (constrained to one cylinder). While  is dependent on the amount

of controller memory, their array achieves about 80% of its maximum throughput with about 2%
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of a disk’s worth of memory. With this much memory,  is 2.4. Using the array parameters

in figure 12 and taking  to be the time of a 5 track seek, one obtains a peak

throughput of 624 accesses per second, or an average of 28.4 I/Os per second per disk. With 5%

of a disk’s worth of memory, LRAID-X4 achieves its maximum of 760 I/Os, or 34.5 I/Os per disk

per second. However, LRAID-X4 reaches this performance maximum with 20 disks (16 data, 2

parity, 2 log) for a 100% write workload. Additional disks do not increase performance. In com-

parison, the parity logging disk array simulated in section 8, whose controller requires about 2%

of a disk’s worth of memory, is predicted to achieve 36.7 I/Os per disk per second in section 3 on

the same workload, and its performance continues to increase with increasing numbers of disks.

The class of less closely related research efforts can be characterized by their use of three

techniques that are frequently exploited to improve throughput in disk arrays: write buffering,

write-twice, and floating location.

Write buffering delays users’ write requests in a large disk or file cache to achieve deep

queues, which can then be scheduled to substantially reduce seek and rotational positioning over-

heads [Seltzer90, Solworth90, Rosenblum91, Polyzois93]. Fault tolerance is at risk in these sys-

tems unless fault-tolerant caches are used (nonvolatility is a minimum requirement).

The write-twice approach attempts to reduce the latency of writes without sacrificing the

durability advantages of disk storage. Similar to the floating data and parity technique, several

tracks in every disk cylinder are reserved, and an allocation bitmap is maintained. When a write is

issued, the data is immediately written (typically in a self-identifying manner) to a rotationally

close empty location in a reserved track, making the data durable. The write is then acknowl-

edged, but the data is retained in the host or controller and eventually written to its fixed location.

When the data has been written the second time, the corresponding bit in the allocation bitmap is

cleared. While significant memory may be required for the allocation bitmaps and write buffers,

this storage is not required to be fault tolerant, limiting controller cost. Write-twice is typically

combined with one of the write buffering techniques to improve the efficiency of the second

write. This technique has been pursued most fully for mirroring [Solworth91, Orji93].

tracksr

Tfewtrackseek
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The floating location technique improves the efficiency of writes by eliminating the static

association of logical disk blocks and fixed locations in the disk array. When a disk block is writ-

ten, a new location is chosen in a manner that minimizes the disk arm time devoted to the write,

and a new physical-to-logical mapping is established. We have described one such scheme, float-

ing data and parity [Menon92], in this paper. An extreme example of this approach is the log

structure filesystem (LFS), in which all data is written in a segmented log, and segments are peri-

odically reclaimed by garbage collection [Rosenblum91]. This approach converts all writes into

long sequential transfers, greatly enhancing write throughput. However, because logically nearby

blocks may not be physically nearby, the performance of LFS in read intensive workloads may be

degraded. The distorted mirror approach [Solworth91] uses the 100% storage overhead of mirror-

ing to avoid this problem: half of each mirror writes data in fixed locations, while the other half is

used for floating storage, achieving higher write throughput while maintaining data sequentiality.

In doubly distorted mirrors, write buffering, write-twice and floating location are all combined to

provide high write throughput while maintaining data sequentiality [Orji93]. However, all floating

location techniques require substantial host or controller storage for mapping information and

buffered data.

Section 11. Concluding Remarks

This paper presents a novel solution to the small write problem in redundant disk arrays

based on a distributed (and possibly replicated) log. Analytical models of the peak bandwidth of

this scheme and alternatives from the literature were derived and validated by simulation. The

proposed technique achieves substantially better performance than RAID level 5 disk arrays.

When data must be preread before being overwritten, parity logging achieves performance com-

parable to floating parity and data without compromising sequential access performance or appli-

cation control of data placement. Performance is superior to floating parity and data, and on some

workloads superior to mirroring as well, when the data to be overwritten is cached. This perfor-

mance is obtained without the 50% disk storage space overhead of mirroring. For extremely reli-
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able environments, the advantage of parity logging systems is shown to be even more

pronounced.

While the parity logging scheme presented in this paper is effective, several optimizations

should be explored. Detailed simulations of multiple failure tolerating configurations should be

undertaken. More dynamic assignment of controller memory should allow higher performance to

be achieved or a substantial reduction in the amount of memory required. Application of data

compression to the parity log should be very profitable. A detailed comparison of the log struc-

tured filesystem [Rosenblum91], which completely avoids small writes, and parity logging should

be undertaken. The interaction of parity logging and parity declustering [Holland92] merits par-

ticular exploration. Parity declustering provides high performance during degraded-mode and

reconstruction while parity logging provides high performance during fault-free operation. The

combination of the two should provide a particularly cost effective system for OLTP environ-

ments.
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RAID level 1: Mirroring

Figure 1Data Layouts. In nonredundant disk arrays, data units are simply interleaved across

the array. RAID level 1 arrays duplicate every user data unit. RAID level 4 arrays interleave

user data blocks across all disks except one. Blocks on the final disk hold the parity (bitwise xor)

of the corresponding blocks on the other disks. RAID level 5 arrays distribute the parity blocks

uniformly across the disk array. Shaded blocks indicate redundant (parity) information.
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RAID level 0: Nonredundant
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RAID level 4: N+1 Parity
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RAID level 5: Distributed N+1 Parity
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TPC Benchmark

get request from terminal

begin transaction

update account record

write history log

update teller record

update branch record

commit transaction

respond to terminal

Scaling Requirements

Record
Type

Minimum
Quantity per

TPS

Record
Size (Bytes)

Account 100K 100

Teller 10 100

Branch 1 100

History 30K 50

Total 11.5 MB

Figure 2OLTP Workload Example. The transaction processing council (TPC) benchmark is an

industry standard benchmark for OLTP systems stressing update-intensive database services

[TPCA89]. It models the computer processing for customer withdrawals from and deposits to a

bank. The primary metric for TPC benchmarks is transactions per second (TPS). Systems are

required to complete 90% of the transactions in under 2 seconds and to meet the scaling

constraints listed above. Customer account records are selected at random from the local branch

85% of the time, and from a different branch 15% of the time. Because history record writes are

delayed and grouped into large sequential writes and teller and branch records are easily

cached, the disk I/O from this benchmark is dominated by the random account record update.

For a 250 TPS system, at least 2.8GB of storage must concurrently provide more than 250

account record reads and writes per second.
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Figure 3Peak I/O Bandwidth. The figure shows the total kilobytes per second that can be read

from or written to an IBM 0661 drive using random one block (2KB), one track (24 KB), and one

cylinder (336KB) accesses (see figure 12 for disk parameters).
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Data Data Data Parity Log

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Figure 4Basic Parity Logging Model. A RAID level 4 disk array is augmented with a log disk.

Parity update records are written sequentially to the log disk at track transfer rates. A full log

disk triggers a read of the log and parity disks, computation of the current parity, and a rewrite

of the parity disk.
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Figure 5 Model Parameters. The bandwidth utilization models of section 2,3 and 4 are

presented in terms of the parameters list above. The majority of these parameters are based on

disk geometry, while the remainder come from applications or array configuration. The left hand

column indicates the symbol used in this text.
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Data Data Data
Parity Log
Reg 0 Reg 0

Data Data
Parity Log
Reg 1 Reg 1

Data
Parity Log
Reg 2 Reg 2

Data
Parity Log
Reg 3 Reg 3

Data Data
Parity Log
Reg 4 Reg 4

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4Region

0

1

2

3

4

Data

Data

Data

Data

Data

Data

Figure 6 Parity Logging Regions. Dividing each disk into regions dramatically reduces the

required amount of controller buffer space. Each region requires a track buffer to hold its

unwritten log records. When a track buffer fills up, the track is written into its region’s log with a

full track write.
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Data Data Data
Parity Log
Reg 0 Reg 0

DataData Data
Parity Log
Reg 1 Reg 1

Data DataData
Parity Log
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Data Data Data
Parity Log
Reg 3 Reg 3

Data Data Data
ParityLog
Reg 4Reg 4

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4Region

0

1

2

3
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Figure 7Log and Parity Rotation. Spreading the log and parity over the entire array increases

the parity and log bandwidth to the entire bandwidth of the array. An individual region may still

be a hot spot.
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Figure 8 Block Parity Striping. Parity and data are distributed over all but one disk in each

region. The remaining disk contains the parity log. A contiguous layout of parity on each disk

allows efficient cylinder-rate transfers, while distribution reduces the latency of parity

reintegration. The inset shows a detailed layout of a sample region.
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Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Log 0
Data 0

Figure 9 Distributed Parity Logs. To increase the log bandwidth for each region, the log for

each region can also striped. In this example, each log region is striped over two disks. As

before, the parity is still spread over all disks. To preserve single fault tolerance, a parity sublog

for a region cannot reside on the same disk as any data for that region. Thus, while striping

reduces the time for log reintegration for a given region, it increases the space overhead. In

addition, if the log is striped over too many disks, the sublogs will become too small and access

to them will be inefficient, decreasing performance. When the log is not striped, however, many

user data requests queue behind the log reads, which degrades throughput and response time.

Fortunately, a moderate degree of striping, while increasing cost my a small amount,

substantially improves performance.
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Figure 10  Disk Storage Overheads. While increasing the log striping degree improves array

performance, the storage overhead increases. Shown above is the percent of the total disk

capacity devoted to storing redundant data in an array with 22 disks. In general, the storage

overhead is 2/(N+1-L), where N is the number of disks and L is the log striping degree. Thus, the

storage overhead depends only on the total number of disks in the array and the degree of log

striping. The horizontal line shows the capacity overhead of a RAID level 5 configuration of the

same array.

In addition to these disk space overheads, parity logging also requires buffer in the host or

controller. With the example disk array of figure 12, 5600KB of buffer is required, roughly

equivalent in cost to 2% of the disk array.
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Figure 11Log length and efficiency. As the ratio of log to parity increases, the amount of disk

arm time devoted to parity maintenance per small user write decreases. These two graphs show

this tradeoff for the 22 disk array described in figure 12. The graph on the left shows the disk

arm time overhead per small user write for I/Os devoted solely to parity maintenance for parity

logging. Also shown is the overhead of RAID level 5. Parity logging asymptotically approaches

an overhead that is 15% of a small random access, and achieves 30% of the overhead of a

small random access with a log to parity ratio of 0.7. The graph on the right shows the

overhead for parity and log space in parity logging and RAID level 5 as function of the ratio

between log and parity space.
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Geometry: 949 cylinders, 14 heads, 48 sectors/track
Sector Size: 512 bytes
Revolution Time: 13.9 ms
Seek Time Model:  (ms)

2 ms min, 12.5 ms avg, 25 ms max
Track Skew: 4 sectors
Head Switch Time: 1.16 ms

2.0 0.01 dist 0.46 dist⋅+⋅+

Disk Parameters

Access size: Fixed at 2 KB
Alignment: Fixed at 2 KB
Write Ratio: 100%
Spatial Distribution: Uniform over all data
Temporal Distribution: 66 closed loop processes

Gaussian think time distribution

Workload Parameters

Stripe Unit: Fixed at 2KB
Number of Disks: 22 spindle synchronized disks.
Head Scheduling: FIFO
Power/Cabling: Disks independently powered/cabled

Array Parameters

Figure 12 Simulation Parameters. The access size alignment and spatial distribution are not

unlikely in OLTP workloads, while a 100% write ratio emphasizes the performance differences

of the various techniques. Since the disks have independent support hardware, disk failures will

be independent, allowing a single parity group [Gibson92] to be single fault tolerant. Disk

parameters are modeled on the IBM Lightning drive [IBM0661]. Note that thedist term in the

seek time model is the number of cylinders traversed, excluding the destination. As is commonly

done in SCSI disks, the track skew is chosen to equal the head switch time, optimizing data

layout for sequential multitrack access. These disks do not support zero latency writes.
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Figure 13 Parity Logging Overheads. The amortized overhead cost of extra I/Os done in our

example parity logging array is shown above. The log writes contribute approximately 40% of

the overhead (2.78 milliseconds), while the cylinder rate log reads, parity reads and parity

writes each contribute about 20% (1.29 milliseconds). For comparison, the extra I/Os done by

RAID level 5 cost nearly 35 milliseconds per small write.

0 2 4 6

Log Write Log Read Parity Read Parity Write

1 53 (ms)
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Figure 14  Floating Data/Parity. When updating block D2, the controller searches for a free

block within the cylinder that is rotationally close to block D2. In this case, it finds the block at

offset 3 into track 3. Immediately following the preread of block D2, the controller writes the new

block to the new location, and updates the mapping tables. The preread of the old information and

the write of the new are thus effectively done in the time of one access.
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14.5
18.1

24.3

36.7

24.3

48.5

21 22.5

RAID Floating Mirroring Parity
Logging

Non-

Preread User Data
No Preread
Both

Figure 15Model Estimates. I/Os per second per disk as predicted by the bandwidth models of

section 3 and 4. These predictions assume 100% disk utilization, FIFO disk arm scheduling and

an unbounded number of requestors. RAID level 5 and parity logging disk arrays both benefit

substantially from not having to preread user data. Floating data and parity substantially reduces

the overhead of the user preread and therefore achieves less benefit from its elimination.

Mirroring and nonredundant disk arrays do not need to preread user data. Since these predictions

assume 100% disk utilization, the parity logging estimates are insensitive to the degree of

striping.

Data/ParityLevel 5 redundant
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Figure 16 Effects of track size on throughput. The performance of parity logging is highly

sensitive to the number of data units per track. The figure above shows the performance of

mirroring, parity logging (unstriped log), and RAID level 5 on a workload of 100% blind small

writes for varying number of data units per track. Parity logging achieves better performance

than mirroring when there are at least thirteen data units per track.
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Figure 17Varying the number of tracks buffered per region. The log write overhead declines

as the number of tracks buffered per region increases, asymptotically approaching the

performance of cylinder rate transfers. While zero latency writes can eliminate the rotational

delay component of the log write overhead, this component is negligible if more than a single

track is buffered.

Figure 17(a): Log write overhead Figure 17(b): Peak throughput
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Figure 18 Peak throughput normalized to nonredundant array performance as a function of

the ratio of average seek time to rotational latency. Altering the ratio of the average seek time

to the rotational period of the disk changes the relative performance of mirroring, floating data

and parity, nonredundant and parity logging disk arrays. Shown above is the relative

performance of these approaches on the example 22 disk array (figure 12) as the average seek

time for the drive is varied. The average seek time is varied from 20% of the Lightning average

seek to twice that of the Lightning average seek. This parameter range models a large spectrum

of drives, from those with very fast positioning to Lightning-like drives spinning at 7200 RPM.

When the scaled seek time is 1.0, the ratio of average seek time to rotational latency is the same

as the Lightning drive.

Mirroring spends the same fraction of time seeking during a small write as a nonredundant

access, so the relative performance of mirroring is constant with respect to that of the

nonredundant array. RAID level 5 and parity logging spend a smaller fraction of time seeking

during a small write relative to a nonredundant write. Thus, the relative performance of RAID

level 5 and parity logging increases as the ratio of seek time to the rotational period increases.
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Figure 19Reintegration latency.The time to reintegrate a region’s log into its parity depends

strongly upon the degree of log striping. The above figure compares reintegration latency for

various log striping degrees. Also shown is the minimum average period between reintegrations

for workloads of 100% small writes in both the preread required and cached cases assuming

100% disk utilization.

In particular, consider the case of a parity logging disk array with an unstriped log and

effective data caching (the no preread case). Since the reintegration time is longer than the

minimum average period between reintegrations, the reintegration buffer can become a

performance bottleneck. With an open arrival process (that is, an infinite number of requesting

user processes), logs will become full faster than they can be emptied, leading to exhaustion of the

controller buffer pool. At this point, all write accesses will be forced to wait, leading to an

infinitely growing queue depth. With a closed arrival process (fixed number of processes executing

a request/response loop), this bottleneck will manifest by high response time variance, drive

underutilization, and degraded throughput.
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Figure 20(a): Large pool of spare disks

Figure 20(b): Single spare disk

Figure 20Disk array reliability. Modern disks have mean times to failure ( ) in excess

of a quarter million hours, allowing construction of extremely reliable single fault tolerant

arrays. With a  of 300,000 hours and a mean repair time ( ) of one hour, the

5 and 10 year reliability of both a parity logging and a mirrored array of 22 disks is greater than

99.95% with a large pool of spare disks. In the more plausible scenario of a single on-line spare

and a 3 day (72 hour) spare replacement time, the 10-year reliability of both arrays still exceeds

99.94%. Despite a greater than 34 year mean lifetime of a single disk, the chance of a

nonredundant 22 disk array surviving at least 5 years is less than 1 in 20, emphasizing the need

for fault tolerant storage.

Mirroring Parity Logging Nonredundant

User capacity 50% 90% 100%

MTTDL 466,683 years 22,226 years 13,636 hours

5 year reliability 99.999% 99.978% 4%

10 year reliability 99.998% 99.955% less than 2%

Mirroring Parity Logging Nonredundant

User capacity 50% 90% 100%

MTTDL 389,688 years 18,568.4 years 13,636 hours

5 year reliability 99.999% 99.973% 4%

10 year reliability 99.997% 99.946% less than 2%

MTTFdisk

MTTFdisk MTTRdisk
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Figure 21(a): Peak user I/Os

Figure 21 Striped Parity Logging. Figures 21(a), (b), and (c) show the achieved user I/Os per

disk per second, average user response time, and the standard deviation of the response time

under peak load for various degrees of parity log striping. All metrics improve substantially as the

striping degree is increased from one (no striping) to four. The difference in performance between

striping over 4 to 13 disks is slight, indicating the robustness of the technique.

The metric with the most dramatic improvement is the response time standard deviation. When

unstriped log reads are long (see figure 22), many user requests become queued for that disk,

leading to a large variance in the response time. Striping reduces the length of the log reads,

thereby reducing this variance.
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Figure 21(b): Response time at peak load
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Figure 21(c): Response time standard deviation at peak load
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Figure 22 Sublog Read Times. This figure presents the time taken to read a sublog for low

degrees of log striping for the example disk array. When the sublog reads are very long, many

user requests queue for the disk that is servicing the sublog read, increasing response time and

decreasing array utilization and throughput.
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Figure 23(a): Response times

Figure 23Response Times and Utilization. Figures 23(a)-(c) present the average user response

times and response time standard deviations as a function of the number of small random writes

achieved per disk per second. Figures 23(a) and (b) present the results when the user data must

be preread, while the results in figure 23(c) assume the user data was cached, making the

preread of the user data unnecessary. In addition to reducing the amount of I/O required, cached

user data allows the user write and parity update to occur concurrently, significantly reducing

response time for RAID level 5 and floating data and parity. The reported times are in

milliseconds. The response time standard deviation for the no preread case is essentially

identical to figure 23(b).
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Figure 23(b): Response time standard deviation
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Figure 23(c): Response times without prereads
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RAID Floating Mirroring Parity
Logging

Nonredundant

Figure 24Disk Utilization at Peak Load. The figure above presents the average disk utilization at

maximum load for the array simulated in figure 23.
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Figure 25Model errors. This figure shows the percent error between the models of sections 3 and

4 and the simulations of section 8. The model predictions have been scaled by the achieved disk

utilizations of figure 24. In all cases, the disagreement between the simulation and the models is

less than 5 percent. Note that the 95% confidence interval on the simulation response time is also

% of the mean.5±
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I/O Type
% of

Workload
I/O Size
(KBytes)

Read 20 1

Read 20 2

Read 33 4

Read 9 24

Write 9 1

Write 7 8

Write 2 24

Figure 26Airline reservation workload. The I/O distribution shown above was selected to

agree with general statistics from an airline reservation system [Ramakrishnan92]. This

workload is reported as approximately 82% reads, a mean read of 4.61KB, and a median read

of 3KB. The mean write size was larger, 5.71 KB, but the median write was smaller, 1.5KB.

Locality of reference and overwrite percentages were not reported. All accesses are assumed

to occur on their natural boundaries.



Page 63 of 66

Figure 27Airline reservation simulation. Shown above are the results of simulation using

the access size distribution of figure 26. The access distribution is uniform throughout the 22

disk array (figure 12). For all configurations, the data stripe unit was 24KB, so no access

spans more than a single drive. For RAID level 5 and parity logging, results are shown both

for the case where all writes are blind, and when the old data for all writes is cached (no

preread). While CVSCAN [Geist87] scheduling improves throughput and response of all

workloads, mirrored and nonredundant disk arrays improve the most, since seek time is a

larger proportion of their underlying I/Os.
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Disk 0

Disk 5

Disk 3

Disk 2

Disk 7

Disk 5

Disk 1

Disk 6

Disk 4

Parity

Parity

Parity

Row 0

Row 1

Row 2

Parity
Column 2

Parity
Column 1

Parity
Column 0

Figure 28 Two dimensional parity. One disk array organization that achieves double failure

tolerance is two dimensional parity. Parity disks hold the parity for the corresponding row or

column. In the example above, the parity disk for column 0 holds the parity of disks 0, 3 and 5.

Whenever a unit in a data disk is written, the corresponding units in both row and column parity

disks are also updated. Thus a write to disk 1, in the example above, would require updating the

parity on the shaded parity disks, parity row 0 and parity column 1.



Page 65 of 66

Chk-A

Chk-B

Log’

Chk-A

Chk-B

Data

Chk-A

Chk-B

Data

Chk-A

Chk-B

Data

Chk-A

Chk-B

Log’

Chk-A

Chk-B

Log

Chk-A

Chk-B

Log

Figure 29 Nonbinary coded double failure tolerant parity logging disk array.By using

nonbinary codes, disk arrays can achieve double failure tolerance with only two disks of check

data. Shown above is a single region of double fault tolerant parity logging disk array with

nonbinary check information. The parity of a single fault tolerant array is replaced with two

sets of check information. The shaded area shows an example pair of check information blocks

and the data blocks that they protect.

To achieve double fault tolerance in such a parity logging array, the striped log for each

region is duplicated. In the picture above, each log is striped over two disks. Note that the con-

tents of this duplicated log are identical and are not associated with a particular copy of the

check information.
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Figure 30Performance of multiple failure tolerating arrays. While the performance of all

array configurations declines with the number of failures tolerated, parity logging declines the

least, decreasing in performance by about 15% per degree of failure tolerated. The highest

performing alternative, mirroring, has a huge disk space overhead, requiring 3 or 4 disks per

disk of user data in the double and triple failure tolerating cases, respectively. The

performance of RAID level 5 and floating data and parity both decline rapidly, achieving less

than 10 user writes per second in the triple failure tolerating case. The shaded portion of each

bar shows the performance when the data to be rewritten is not cached, while the full height

indicates performance when data is cached.


